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Abstract

Diffusion models are notable for their ability to model extremely complicated
probability distributions. As a result, many prominent results in recent image
synthesis methods stem from a diffusion model backbone. Understanding models
with such expressive capability and understanding their vulnerabilities will always
be of interest, and recent work on deep diffusion models has made progress in that
direction [20]. With that said, thorough understanding of the latent noise stages in
denoising diffusion models is still an open research topic. It is unclear how much
perturbations to the denoising process effect the quality of samples, and whether or
not said perturbations can be constructed to steer the model maliciously. To that
end, we explore the robustness of Denoising Diffusion Probabilistic Models [7]
to adversarial perturbations. We explore this with vanilla diffusion models and
classifier-free guided diffusion models. The code for our models and experiments is
available at https://github.com/TristanSaidi/AdversarialDiffusion

1 Introduction

Diffusion models are a family of deep generative models used primarily for image synthesis. They
were first introduced by Sohl-Dickstein et al. [17], but gained prominence with Ho et al.’s [7] paper.
Ho et al. showed that high-quality image samples can be achieved via deep denoising diffusion. This
is done by having two parameterized Markov chains; one to iteratively inject noise into an image
with a schedule, and the other chain learns to restore the original image. Ho et al. also [7] proposed
a new parameterization that resembles denoising score matching and has equivalence to Langevin
dynamics, which improved variational bounds and results. Variants like Score-based models [20]
construct an stochastic differential equation (SDE) to disturb the image into a distribution, while the
reverse-time SDE repairs the image. Work have also shown that diffusion is also possible when the
transformations are deterministic [1].

While research has been done on using diffusion models to generate attacks [3] or defenses [14]
against other classification models, there is a lack of study into attacking the diffusion models
themselves. The latent space of these models not well understood, and it is hoped that by successfully
perturbing them, it will shed insight into their inherent structures.

We propose analysis of the latent space for diffusion models by adversarially perturbing the generated
image at various stages of the denoising process.

2 Related Work

Diffusion models have quickly become state-of-the-art for generating high resolution images
[7, 18], beating out GANs [4]. Various modifications of the standard diffusion have been proposed,
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most notably with score-based generative modeling [20], and classifier-free guidance [8]. They have
been applied to the inverse-problem in medical imaging [19], domains with low-density data [16],
and classification [13].

Adversarial Attacks were introduced by Szegedy et al. [21] when they discovered that appending
gradient-based noise to images could fool classification models. While it did not gain prominence
at first, it has grown into a larger issue as these machine learning sees more use. Over time, these
attacks have been automated [23], and applied to black-box models [9]. These attacks are not only
limited to vision, as it has crossed domains to Natural Language Processing [10].

Latent Space of diffusion models remains a less studied area. It is believed that the intermediate
latent spaces hold semantic meaning [12], and experiments have been done by looking at the feature
map of the U-Net [2]. In addition, Tumanyan et al. [22] demonstrate that features from the U-Net
can be injected into the generation process of a target to shape the results of the diffusion process. In
addition, there are approaches to understand it mathematically through Riemannian Geometry [15],
bringing techniques that have been used previously to analyze GANs [25]. That being said, there
exists little research in exposing the vulnerability of diffusion models to latent perturbations.

3 Model Definition

3.1 Denoising Diffusion Probabilistic Models

The Denoising Diffusion Probabilistic Model defines a joint distribution over observed x0 and hidden
variables x1:T .

pθ (x0:T ) := p (xT )

T∏
t=1

pθ (xt−1 | xt)

pθ (xt−1 | xt) := N (xt−1;µθ (xt, t) ,Σθ (xt, t))

(1)

Unlike most other probabilistic models, the approximate posterior is defined to be a sequence of
known noising steps applied to the original data distribution:

q (x1:T | x0) :=

T∏
t=1

q (xt | xt−1)

q (xt | xt−1) := N
(
xt;

√
1− βtxt−1, βtI

) (2)

Learning the conditional Gaussian transitions pθ(xt−1|xt) involves optimizing the evidence lower
bound (ELBO),

E[− log pθ(x0)] ≤ Eq

− log p(xT )−
∑
t≥1

log
pθ(xt−1|xt)

q(xt|xt−1)

 (3)

Ho et al. [7] show this objective can be rewritten as

L(θ) := Eq

[
DKL(q(xT |x0)||p(xT )) +

∑
t>1

DKL(q(xt−1|xt,x0)||pθ(xt−1|xt))− log pθ(x0|x1)

]
(4)

3.2 Class-conditional Diffusion

Augmenting vanilla diffusion models to include class-conditioning can be achieved in various ways.
One such method involves using a classifier to guide the diffusion process. Concretely, a classifier is
trained to predict the distribution over labels from noisy images, pϕ(y|xt). Dhariwal et al. [5] show
that conditional reverse process sampling can be approximated as a perturbed gaussian, where the
perturbation is a function of the gradient of the classifier’s predicted probability w.r.t. the noisy input
∇xt

log pϕ(y|xt).
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While this method is effective in practice, it involves training a separate classifier on noisy images
produced by the forward diffusion process. To avoid this our initial experiments utilize naive
class-conditional diffusion - our reverse process network, pθ, simply takes the class label as input.
Therefore, our optimization involves taking a gradient descent step on the following expression
(augmented from [7]):

E(x0,y)∼D
ϵ∼N (0,I)

[
∇θ

∥∥∥∥ϵ− ϵθ(
√
ᾱtx0 + ϵ

√
1− ᾱt, t, y)

∥∥∥∥2
]

(5)

Reverse process sampling then involves a minor modification to 1. Namely, each of the learned
gaussian transitions are conditioned on the desired class label:

pθ (xt−1 | xt) := N
(
xt−1;µθ (xt, t, y) , σt

)
3.3 Class-conditional Diffusion via Classifier-Free Guidance

Ho et al. [8] derive an effective classifier-free guidance formulation for diffusion models that achieve
comparable performance to state-of-the-art classifier-based counterparts. They train a single neural
network to model pθ(x0) and pθ(x0|y). The former is parameterized by ϵθ(xt) while the latter is
parameterized by ϵθ(xt, y). To encapsulate both models with a single parameterization, ϵθ(xt) is
modelled as ϵθ(xt, y = ∅), where ∅ is a null token. Score estimates during denoising simply turn
into a weighted combination of the class-conditional and unconditional score, where the weighting is
controlled by a guidance parameter w:

ϵ̃θ(xt, y) = (1 + w)ϵθ(xt, y)− wϵθ(xt)

Optimization of θ in this classifier-free guidance formulation involves following the same gradient
described in 5. The only difference stems from random alternations between training conditionally
and unconditionally, specified by the hyperparameter puncond ∈ [0, 1]. Training the unconditional
variant simply involves setting y = ∅.

4 Adversarial Perturbations

To explore the robustness of state-of-the-art diffusion models to perturbations, we devised three
different attacks that we applied to the models described in 3. Our goal was to explore the type of
perturbations required to steer image-generating diffusion models away from the desired sampling
distribution. As mentioned, we pursued this primarily in the context of class conditional diffusion
models - We also looked to gain additional insight into the intermediate noising stages, hoping to find
correlations between perturbation effectiveness and the denoising stage at which the perturbation was
injected.

For all of the following experiments, we use a linear variance schedule as well as T = 300 denoising
iterations.

. . . xt xt−1 . . .

ϵ

x0x300

Figure 1: Visualization of our perturbation scheme. For a fixed denoising stage t we add the
perturbation ϵ to the partially denoised sample, and then continue the sampling process
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4.1 Gaussian Noise

We began with introducing simple gaussian perturbations at a range of denoising steps for the three
models described in 3. For a desired class label y, we sample a partially denoised intermediate
representation xt ∼ pθ(xt|xT , y). We then perturb it with ϵ ∼ N (0, αI), and finish the denoising
process by sampling x0,pert ∼ pθ(x0|xt + ϵ, y).

Figure 2 shows perturbed and unperturbed samples for each of the three diffusion models mentioned.
More extensive figures that vary class label and denoising stage t can be seen in 3 and 4.

These experiments highlight the unsurprising robustness of diffusion models to naive perturbations.
We therefore turned our attention to more targeted and adversarial forms of perturbations.

Figure 2: Unperturbed (right) and gaussian perturbed (left) samples from unconditional (top), class-
conditional (middle) and classifier-free guided (bottom) diffusion models. All perturbations occur at
denoising stage t = 50.

4.2 One-step Gradient Method

As a more targeted attack, we sought to introduce perturbations that pull class conditional samples
towards a target image from an undesired class. Concretely, given a desired class label y and an
adversarial class label yadv we generated a perturbation ϵ that decreases the expected l2 loss between
the sample x0 ∼ pθ(x0|xt + ϵ, y) and our adversarial target xadv ∼ pθ(xadv|xt, yadv). Naturally, we
can backpropate said l2 loss back to xt to find the adversarial perturbation ϵ that best pulls our sample
towards the target.

ϵ ≈ −∇xt

∥∥∥∥x0 − xadv

∥∥∥∥2
x0 ∼ pθ(x0|xt, y)

Backpropagation through reverse-process sampling is achieved via the reparameterization trick , as we
parameterize the learned transition pθ(xt|xt−1) as a multivariate gaussian [11]. Thus, reverse-process
sampling can be written as

xt−1 = µθ(xt, y) + σtz

where z ∼ N (0, I), allowing us to backpropagate through the learned µθ.

Figure 7 in the Appendix illustrates the effect of the described perturbation to both the class-
conditional and classifier-free guided diffusion models. For the former, the perturbation induces
significant artifacts in the sampled image - while they don’t directly resemble the adversarial target,
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the perturbations are noticeably more effective at producing bizarre image features than gaussian
perturbations.

For the guided diffusion model however, the perturbation had no noticeable effect on the quality
of the samples, especially when the perturbations were introduced early in the denoising process.
Perhaps this is unsurprising - classifier-free guidance forces the denoising network ϵθ to model both
the conditional and unconditional score functions. Since sampling involves a weighted combination
of said scores, a latent perturbation towards another class doesn’t conflict with the unconditional
score function!

4.3 Several-step gradient Method

Our experiments indicated that single-step gradient based perturbations were largely ineffective
in perturbing sampled images towards adversarial targets. As a result, we extended our efforts to
performing iterative gradient descent with the update rule below in an attempt to find an effective
perturbation:

xt ← xt −∇xt

∥∥∥∥x0 − xadv

∥∥∥∥2
x0 ∼ pθ(x0|xt, y)

Figures 8 and 9 indicate that such a formulation is effective. Over several steps of gradient descent,
the noise gets optimized to produce an image closer to the adversary. For both the class-conditional
and the classifier-free guided diffusion models, the learned perturbations applied late in the denoising
process appear to perturb the sample towards the adversarial target.

5 Conclusion

Diffusion models proved to be more resilient to adversarial perturbations than expected. For the
Gaussian noise case, since the model is trained via denoising Gaussian noise, the perturbation had no
real effects on the type of image generated. Perturbations in the later denoising stages did lead to
some texture changes in the center, suggesting that the final few layers of diffusion deal with finer
details.

One-step gradient descent techniques are usually enough to adversarially affect image classification
models [6]. In our case, for both the class conditional and classifier-free guidance, the perturbation
had little to no effect on pulling the sampled image towards the adversarial target.

That being said, our gradient-descent based approach ultimately enabled learning of effective adver-
sarial perturbations against the current state-of-the-art class-conditional diffusion architecture. The
effectiveness of such perturbations could open the door to downstream attacks of deployed diffusion
models, and further investigation into these gradient-based attacks is certainly of interest.
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Figure 3: Gaussian perturbed images generated from the classifier-free guided diffusion model. From
left to right represents perturbations at stages t ∈ {50, 100, 150, 200}
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Figure 4: Gaussian perturbed images generated from the class-conditional diffusion model. From left
to right represents perturbations at stages t ∈ {50, 100, 150, 200}
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Figure 5: Unperturbed sample (left) and adversarial target (right)

Figure 6: Single-step gradient perturbed samples from the class-conditional diffusion model. Latent
perturbations injected at t = 50, 100, 150, 200 (left to right)

Figure 7: Single-step gradient perturbed samples from the classsifier-free guided diffusion model.
Latent perturbations injected at t = 50, 100, 150, 200 (left to right)

Figure 8: Unperturbed sample (left) and adversarial target (right)

Figure 9: Several-step perturbed samples from the class-conditional diffusion model. Latent perturba-
tions injected at t = 50, 100, 150, 200 (left to right)

Figure 10: Several-step perturbed samples from the classier-free diffusion model. Latent perturbations
injected at t = 50, 100, 150, 200 (left to right)
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