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Abstract

Recent works in exploring high dimensional neural network loss landscapes have
expanded our understanding of these non-convex optimization spaces. In particular,
it has been discovered that seemingly disparate local minima are connected by
low-loss, high-accuracy curves and simplexes, a phenomenon known as mode con-
nectivity. In this work we look to analyze some of the geometric properties of these
low loss subspaces, including intrinsic dimensionality, curvature, and sensitivity
to perturbations. We perform these analyses across three classes of subspaces:
lines parameterized by two endpoints (1-simplexes), triangles parameterized by 3
endpoints (2-simplexes), and finally nonlinear curves parameterized by a neural
network. Overall we verify that subspace fitting provides an effective way to visual-
ize and sample from low loss regions of weight space. We also extract information
about the nonlinear structure of the space that will inform future extensions of this
project to higher dimensional nonlinear subspace learning and geometry analysis.

1 Introduction

Historically, multi-layer neural network loss landscapes have been thought of as high dimensional
and extremely nonconvex surfaces, where stochastic gradient descent (SGD) training from different
random initializations converge to different isolated local minima throughout the surface. Garipov
et al. [2018], Draxler et al. [2018], Benton et al. [2021] discovered that those modes found through
SGD training of randomly initialized networks are in fact connected through low loss, high accuracy
curves and simplexes in parameter space.

An interesting phenomena in and of itself, mode connectivity also has important applications for
practitioners. Other recent works aimed at characterizing the implicit biases of SGD have shown
that SGD is predisposed towards low curvature regions of the space, and in fact converges to local
minima due to an in-built negative feedback loop that continuously keeps the optimization trajectory
in low-curvature regions during training [Damian et al., 2023, Gilmer et al., 2022] Mode connectivity
can provide a way to access these low-curvature regions for analysis and efficient model combination
(ensembling methods).

In this work we aim for the former as we perform intrinsic dimensionality estimation, curvature
estimation, and perturbation analysis on various classes of low loss subspaces. These analyses are
done on a one hidden layer multilayer perceptron (MLP) trained on the Fashion-MNIST dataset [Xiao
et al., 2017]. 1

1Code is available here: https://github.com/tingtang2/loss-subspace-geometry

Preprint. Under review.

https://github.com/tingtang2/loss-subspace-geometry


2 Related Works

Garipov et al. [2018], Draxler et al. [2018] were the first works to report on and characterize mode
connectivity as lines and curves connecting the modes of independently trained networks. Shortly
following, Fort and Jastrzebski [2019] also reported on the behavior by characterizing it in the context
of their model of the loss surface. This model consists of a union of high dimensional manifolds
which they term as wedges. Benton et al. [2021], Wortsman et al. [2021] subsequently expanded the
concept of mode connectivity to include simplexes and simplicial complexes as parameterizations of
the low loss subspaces. Crucially Wortsman et al. [2021] developed an algorithm to find learn these
low loss subspaces directly through training, which we discuss in 3.1.

Also relevant and part of the inspiration for this work is Skorokhodov and Burtsev [2019], who
extended the method from Garipov et al. [2018] to find planes that resembled any given 2 dimensional
image. This demonstrated the complexness of neural network loss landscapes and motivated us to
further explore finding useful structures in this space.

3 Methods

3.1 Subspace finding

Throughout our experiments we analyze three different parameterizations of loss subspaces for the
neural network f(x; θ):

• Lines parameterized by two endpoints (1-simplexes), denoted by P(α;ω1,ω2) = (1 −
α)ω1 + αω2, where α ∈ [0, 1]

• Triangles parameterized by 3 endpoints (2-simplexes), denoted by P(α1, α2;ω1,ω2,ω3) =
(1− α1 − α2)ω1 + α1ω2 + α2ω3, where α1 + α2 ∈ [0, 1]

• Nonlinear curves parameterized by a neural network, denoted by g(α;ϕ), where α ∈ [0, 1],
g : R1 → Rω is a neural network, ϕ are the parameters of the neural network, and ω is the
size of the parameter space of θ.

3.1.1 Affine Subspaces

Throughout the rest of this work, we use the subspace finding method from Wortsman et al. [2021],
presented in Algorithm 1. For our work we consider learning lines and triangles (1- and 2- simplexes)
for convenience, however this method generalizes to higher dimensions and other functional forms.
In fact, we extend this algorithm to find loss subspaces parameterized by a non-linear function in the
form of a MLP, as described in the next section.

Algorithm 1 Affine Subspace finding algorithm from Wortsman et al. [2021]
Input: Function defining line in weight space P with endpoints ω1,ω2, network function f , training
set S, loss function l, regularization parameter β

1: Independently initialize ω1,ω2.
2: for batch (x,y) ∈ S do
3: Sample α uniformly from [0, 1]. ▷ α defines where on the line you sample weights from
4: θ ← P(α;ω1,ω2)
5: ŷ← f(x;θ)
6: L ← l(ŷ,y) + β cos2(ω1,ω2) ▷ regularization to encourage diversity between ω1,ω2

7: Backprop from L, update each {ωi}2i=1 with ∂L
∂ωi

= ∂l
∂θ

∂P
∂ωi

+ β ∂ cos2(ω1,ω2)
∂ωi

.
8: end for

Formally, consider ω1 ∈ RN and ω2 ∈ RN as the endpoints of a line in weight space defined
by P(α;ω1,ω2) = (1 − α)ω1 + αω2, where α ∈ [0, 1]. The training procedure above seeks to
optimize parameters ω1,ω2 such that the line defined by P(α;ω1,ω2) contains solutions with high
test accuracy for all values of α. This is achieved by optimizing the training objective

E(x,y)∼D[Eα∼Uniform(0,1)[l(f(x, P(α;ω1,ω2)),y)]] (1)
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where D denotes the data distribution, f denotes the function mapping between x and y, and l
denotes a loss function.

Practically, we optimize Equation 1 through stochastic updates and backpropagation. Inspired by Fort
et al. [2019], the method above also includes a regularization term in order to explicitly encourage
functional diversity along the line parameterized by P(α;ω1,ω2). This is done by encouraging ω1

and ω2 to have a cosine similarity 0. Overall, this method differs subtly from popular methods such as
those found in Garipov et al. [2018] and Benton et al. [2021], as those methods begin with randomly
initialized networks that have already been trained a priori before proceeding to find the connecting
low loss subspace. This method learns the loss subspace directly during training by keeping track of
the functional form of each kind subspace and updating its parameters.

3.1.2 Nonlinear Subspaces

As mentioned, we also extend the subspace finding method from Wortsman et al. [2021] to the
nonlinear case by parameterizing our subspace with a MLP. Our optimization procedure is analogous
to Algorithm 1, where gradients from the network f backpropagate to our non-linear parameterized
subspace.

Algorithm 2 Nonlinear Subspace finding algorithm
Input: Function g parameterized by ϕ that maps scalar α to weight space, network function f ,

training set S, loss function l, regularization parameter β
1: Independently initialize θ, ϕ.
2: for batch (x,y) ∈ S do
3: Sample α uniformly from [0, 1]. ▷ α defines where on the subspace you sample weights from
4: θ ← g(α;ϕ)
5: ŷ← f(x;θ)
6: L ← l(ŷ,y) + β cos2(g(0;ϕ), g(1;ϕ)) ▷ regularization to encourage diversity between

endpoints
7: Backprop from L, update ϕ with ∂L

∂ϕ = ∂l
∂θ

∂g
∂ϕ + β ∂ cos2(g(0;ϕ),g(1;ϕ))

∂ϕ .
8: end for

Through the formulation in Algorithm 2, we consider g(0;ϕ) and g(1;ϕ) as the endpoints of an
arbitrary 1-dimensional subspace in weight space Rω parameterized by α ∈ [0, 1]. The nonlinear
mapping g : α → Rω is achieved with an MLP, and optimized via Algorithm 2. Our training
objective then becomes an augmented version of Equation 1

E(x,y)∼D[Eα∼Uniform(0,1)[l(f(x, g(α;ϕ),y)]] (2)

whereD denotes the data distribution, f denotes the function mapping between x and y, and l denotes
a loss function. Again, we optimize Equation 2 through stochastic updates and backpropagation, with
additional cosine similarity regularization of the endpoints to ensure the subspace spans a reasonable
region of weight space. This optimization procedure results in a parameterized 1-dimensional
subspace g(α;ϕ) for which low loss is achieved throughout. Analysis of these learned non-linear
subspaces could yield some insight about the structure and geometry of neural network loss spaces;
we explore these concepts in this paper.

3.2 Subspace Analysis

Visualization:

Our goal through visualization was to distill some geometric understanding of our learned subspaces.
We employ a range of techniques to visualize the learned loss subspaces. Each technique centered
around finding a hyperplane through loss space, sampling from it and plotting the resultant loss or
accuracy.

The simplest subspaces to visualize are the 2-simplex subspaces. These spaces are defined by three
learned points {ωi}3i=1 in weight space. It follows that the plane

S = {λ1ω1 + λ2ω2 + λ3ω3 | λ1, λ2, λ3 ∈ R}

3



spans the entire subspace, making it a natural choice for a set to sample from.

1-simplex subspaces unfortunately don’t offer a natural solution like 2-simplexes. 1-simplexes are
defined by their two endpoints ω1,ω2, but a third point is required to constrain the set of intersecting
hyperplanes to 1 element. To this end, we pull from Garipov et al. [2018], who obtain a third point in
weight space via independently training a separate network for the same task. These three points span
a single hyperplane through weight space that spans our 1-simplex and obtains low loss in another
region.

Determining an appropriate hyperplane for visualizing the non-linear subspace required a similar ap-
proach. Our approach included sampling from the plane spanned by the two endpoints g(0;ϕ), g(1;ϕ)
and an independently trained network, a method analogous to the one described for 1-simplexes. We
also played around with sampling from planes constrained by a combination of points in the subspace
and principal components of points sampled from the subspace.

Perturbation Analysis:

In order to test the sensitivity of the learned subspaces as well as the visualizations, we perturb the
endpoints of the learned subspaces for the 1-simplex case with varying amounts of Gaussian noise.

Dimensionality Estimation:

We also seek to estimate the inherent dimensionality (ID) of these learned subspaces, with the ambient
space being the high dimensional weight space of our models. In this work, we use two methods to
estimate ID:

1. Estimate ID through approximating the tangent plane with the rank of the matrix formed
from the distance vectors of the k-nearest neighbors to a sampled point.

2. Estimate ID with a maximum likelihood estimator based on a Poisson Process approximation
[Levina and Bickel, 2004]. This is done by growing spheres of various radii around a sampled
point and observing how the volume of said sphere changes.

For both methods we take the average estimate across all sampled points of a chosen subspace.

Curvature Estimation:

A primary goal of ours is to analyze the curvature of our nonlinear subspace g : α → Rω. We
calculated values of curvature for sampled points along our subspace by performing a discrete
approximation to the following arc-length definition for curvature,

κ(α) =

∥∥∥∥∥∂T⃗ (α)∂s(α)

∥∥∥∥∥ (3)

where T⃗ (α) is the tangent vector to our subspace about g(α;ϕ) and s is arc length.

Performance Comparison:

To evaluate the benefit of nonlinearity in subspace parameterizations we sought to compare the
performance linear and nonlinear subspaces spanning the same regions of weight space. To do
this we randomly sampled from our learned nonlinear subspace model g(α;ϕ) and compared the
performance to sampling from a linear interpolation between the two endpoints g(0;ϕ), g(1;ϕ) of
the same subspace.

4 Experiments and results

4.1 Experimental setup

In all of our experiments we trained a one hidden layer MLP, denoted by f(x; θ), on the Fashion
MNIST dataset for image classification [Xiao et al., 2017], using 50,000 examples for training and
10,000 for validation. All models were trained for 50 epochs with batch sizes of 128 examples using
the AdamW optimizer [Loshchilov and Hutter, 2019]. Dropout [Srivastava et al., 2014] after the
hidden layer was performed and the rate was set to 0.3. This was all implemented using the PyTorch
library [Paszke et al., 2019].
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After training and validating that there is indeed low loss across the learned subspace, we perform
analysis using the methods described in 3.2. Our model and dataset choices result in a weight space
of 407,050 dimensions.

4.2 Affine Subspaces

Figure 1: 0-, 1-, and 2- simplexes visualized using plane method described in 3.2. Color gradient
represents test error rate.
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Results of training, evaluation and visualization of the 1- and 2- simplexes are shown in Figure 1, and
demonstrate the effectiveness of the approach - it successfully finds a line in weight space that lies
within a flat and low-loss portion of the optimization landscape. The visualization for the 2-simplex
also demonstrates this, albeit with endpoints that occupy higher test error regions of the landscape
compared to the 1-simplex. Another interesting obsevation from these plots are that even though all
structures plotted in these spaces are in the form of simplexes, the resulting topography of loss are
round and relatively flat.

Table 1: Dimensionality estimations for 1- and 2- simplex subspaces

Subspace Type k-NN ID estimate MLE ID estimate

1-simplex 1.00 1.17
2-simplex 1.82 1.84

Table 1 shows dimensionality estimates for the 1- and 2- simplex subspaces using the two methods
described in 3.2. These estimates line up with you’d expect as the algorithms were able to identify the
1-simplex in the high dimensional ambient weight space as roughly 1 dimensional, while similarly
they were also able to identify the 2-simplex as roughly 2 dimensional. This helps validate that our
algorithm finds subspaces in the form of the shapes we expect them to be.

Figure 2: Perturbation analysis of line subspace. From left to right the plots show 1-simplex endpoints
with no added noise, N (0, .01) added noise, and N (0, 1) added noise.
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Figure 2 shows the results on visualization and test error rate of perturbing the 1-simplex endpoints
with increasing amounts of Gaussian noise. Overall we see that these endpoints are quite sensitive to
perturbations, demonstrating the minuteness of scale of these subspaces as a perturbation can take
you from a region of low loss to high loss. This result also illustrates the importance of having a
reasonably selected learning rate when optimizing your neural network.

4.3 Nonlinear Subspaces

Our method for finding effective nonlinear parameterizations consistently converged to low-loss
regions of weight space. Sampling from these learned subspaces resulted in parameter settings θ
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for which our classification network f achieved the same performance as an independently trained
network. Visualizations in Figure 4.3 confirm the effectiveness of the optimization procedure, with
the subspace network and independently trained neural network often converging to the same loss
basin in weight space.
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Figure 3: Test accuracy on parameter settings sampled from a hyperplane spanning our learned
nonlinear subspace across three different seeds. Line and circular markers represent the learned
subspace, diamond markers represent an independently trained neural network. The hyperplane was
obtained via the approach detailed in Section 3.2.

We also sought to understand the geometry of these learned subspaces, as nonlinearity in the subspace
parameterization introduces arbitrary complexity. Cursory experiments to compute dimensionality
estimations confirmed that our learned subspace {g(α;ϕ) | α ∈ [0, 1]} had intrinsic dimensionality
1.

Of principal concern to us was the curvature of these parameterizations. While the subspace visual-
izations in 4.3 may appear to be linear, recall that these are merely projections of the subspace onto a
hyperplane and likely mask much of intrinsic structure of the space. To understand these spaces to a
higher degree, we compute discrete approximations of curvature along our subspace as mentioned in
3.2.

Figure 4: Estimated curvature at different points along our subspace, indicated by α. The subspace
on the left is parameterized by a shallow MLP with ReLU nonlinearity, while the subspace on the
right is parameterized by a deeper MLP with tanh nonlinearity.

Interestingly, we consistently find that our learned subspaces exhibit higher degrees of curvature
near the edges of the space (α = 0, α = 1), a finding consistent with earlier work that analyzes the
implicit biases of Stochastic Gradient Descent methods Damian et al. [2023]. This seems to suggest
the optimization pushes the subspace to basins in the loss landscape, where the edges of the learned
space g(0;ϕ), g(1;ϕ) lie on the edges of the basins (which are of course higher curvature areas of
the space). It is worth noting that spiking curvature estimates appear in situations where we use
ReLU nonlinearities as opposed to tanh; discontinuous operators embedded in the neural network
unsurprisingly result in discontinuities in our learned subspaces.

We also extended our analysis to experimenting with linear projections in an effort to gain more
interpretable information about the subspace. Figure 4.3 shows the results of linearly projecting our
nonlinear subspace onto estimates of its principal components across three different seeds. These
estimates were computed by a mixture of sampling and Principal Component Analysis (PCA). The
plots verify our findings from Figure 3 concerning the non-zero curvature of our subspaces.
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Figure 5: Projection of our nonlinear subspace onto its three principal directions for various seeds.
Estimates of these principal components were obtained via sampling g(α;ϕ), α ∼ Uniform[0, 1] and
performing Principal Component Analysis (PCA) on the sampled points.

While this analysis implies that our method has successfully found nonlinear regions of low-loss
in weight space, the effect and necessity of introducing nonlinearity is not yet clear. It is certainly
possible that our optimization procedure yielded subspaces nestled in vast basins of low loss. In
this case, simple interpolation between the endpoints of the space would be just as effective. Un-
fortunately in testing this hypothesis, we found that samples from linear interpolation between
endpoints g(0;ϕ), g(1;ϕ) of our learned subspace to perform equally well as samples directly from
our subspace itself in a majority of cases. While at a glance this may suggest that simpler models
are sufficient for subspace learning purposes, we believe that future extensions of this project could
disprove that idea.

5 Conclusion

These results suggest that more extensive analysis could open the door to a deeper understanding
of loss landscapes. Evidently, fitting linear subspaces to the loss landscape produces effective
ensembling methods and interesting visualizations. However, it does little by way of expanding our
understanding the geometry of these spaces. Our push to fit nonlinear, 1-dimensional subspaces to
the loss landscape has been a fruitful push, but more than anything it has yielded information that
will inform our future efforts. We now believe that higher dimensional subspaces and intentional
selection of the subspace-fitting loss function to encourage span could result in subspace fitting that
captures more information about the nature of the loss landscape.
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